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Abstract

Clumped (or multiply substituted) isotope geochemistry, as an emerging field, has displayed an array of unique and effective
geological and atmospheric applications. In this study, we introduce a new method to facilitate the calculation of concentra-
tions of multiply substituted isotopologues at equilibrium conditions, especially for the calculation of Di (“i” refers to a specific
isotopologue) and Dmass (“mass” refers to isotopologues with the same mass number). The proposed exact method has equiv-
alent accuracy and can be solved by similar level of effort compared to that of Wang et al. (2004). However, the approximate

method proposed here can handle molecules with isotopomers (e.g., 14N15N16O vs. 15N14N16O) and can estimate Dmass of any
kind of molecule, whether the Di values of singly-substituted isotopologues are small or large. The accuracy and convenience of
the proposed method are illustrated through several examples (i.e., CO2, N2O and CH4).

Higher-order anharmonic corrections to Di have been studied carefully. Our results suggest that such corrections are sig-
nificant, especially for isotopologues involving hydrogen atoms. To obtain the most precise Di or Dmass value, including those
higher-order anharmonic corrections into the calculation is recommended. Such corrections to Di are on the order of percent
and are similar to anharmonic corrections for the b factor. The difference is that higher-order anharmonic corrections usually
reduce b values, but would either reduce or increase Di values. For example, the corrections can reduce D13CDH3

by five percent
but increase D18O13C16O by two percent at 300 K. The choice of the frequency scaling factor in the Di calculation is also found
similar to the calculation of b factors. The scaled Di value will approximately equal the un-scaled Di times the scaling factor,
suggesting that the uncertainty in the frequency scaling factor (usually on the order of percent) could possibly cause large
errors in the calculation of Di. The best way to reduce such errors is to use high-level theoretical methods to reduce the uncer-
tainty of the scaling factor, or to choose frequency scaling factors carefully.

Using the method proposed, the equilibrium D47 of CO2 is found to be roughly independent of d13C and d18O for most
geologic samples, suggesting the effects of bulk isotope compositions on D47 are negligible. We find that the sum of Di for
all of the singly substituted isotopologues will be equal to zero approximately, enabling us to determine the stochastic con-
centrations of isotopologues from experiments.
� 2011 Elsevier Ltd. All rights reserved.
1. INTRODUCTION

Stable isotope geochemistry, for a long time, has focused
on bulk isotope composition, which is characterized by the
concentration of one rare isotope (e.g., d18O or d34S).
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Multiply-substituted isotopologues containing two or more
rare isotopes, however, had not been considered extensively
in geochemistry field until the work of Eiler and his col-
leagues (e.g., Eiler and Schauble, 2004; Wang et al., 2004;
Affek and Eiler, 2006; Ghosh et al., 2006a,b; Schauble
et al., 2006; Affek et al., 2007; Came et al., 2007; Eiler,
2007; Ghosh et al., 2007; Guo and Eiler, 2007; Affek
et al., 2008; Guo et al., 2009; Huntington et al., 2009;
Yeung et al., 2009; Eagle et al., 2010). Similarly, Ma et al.
(2008) studied multiply substituted isotopologues in meth-
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ane (CH4), in which the behavior of the 13C–D species
(13CDH3) was studied by integrating IR spectral data and
statistical mechanics. Multiply substituted isotopologues
are surely to exist in many molecules and compounds,
e.g., nitrous oxide (N2O), water (H2O), sulfur dioxide
(SO2), sulfate (SO2�

4 ), and quartz (SiO2). Analytical tech-
niques that can measure these multiply substituted isotopo-
logues and the theoretical understanding of their formation
are lacking.

Wang et al. (2004) proposed the first theoretical frame-
work for multiply substituted isotopologues. They laid a
framework for predicting, recognizing and interpreting
the abundance variations of clumped isotopologues at equi-
librium. Importantly, a new proposed variable “Di” was
introduced to describe the abundance of an isotopologue
“i” of interest in excess of that expected for a stochastic dis-
tribution of isotopes. The magnitude of Di was demon-
strated to be temperature dependent. However, at present
Di cannot be measured directly. Instead, another variable
Dmass, which refers to isotopologues with the same cardinal
molecular mass, is used in experiments. For example, D47 of
CO2 includes three isotopologues (18O13C16O, 18O12C17O
and 17O13C17O), which all have a mass of 47, while
D18O13C16O (i.e., Di) only refers to 18O13C16O. If Di or Dmass

can be measured precisely enough, then formation temper-
atures can be estimated directly without having to assume
isotopic equilibrium with another compound. This ap-
proach has many advantages over the traditional method
of equilibrium oxygen isotope paleo-thermometry, which
requires that the d18O of two materials are in equilibrium
and their d18O can be analyzed or determined indepen-
dently. This condition is often difficult to meet for geologic
samples.

The definition of Di given by Wang et al. (2004) is com-
position-oriented and relies upon a calculated stochastic
concentration of the isotopologue of interest (see Eq. (19)
in their paper). This definition leads to a complicated calcu-
lation procedure when dealing with polyatomic molecules.
Here, we suggest that the definition of Di by Wang et al.
(2004) can be transformed equivalently to a new definition
based on the free energy differences between isotopologues
(i.e., partition function ratios). The advantages of the new
definition of Di are as follows: (1) the equilibrium concen-
tration of any isotopologue can be calculated directly, (2)
either exact or approximate Di values can be calculated,
depending on the targeted accuracy and (3) our approxi-
mate method can deal with Di and Dmass values of molecules
containing isotopomers (e.g., D15N14N16O, D14N15N16O and D47

of N2O), which are important properties that the previous
approximate methods have difficulty to handle.

As an emerging field within stable isotope geochemistry,
the number of theoretical and computational studies on
clumped-isotopes is increasing rapidly. Several important
issues and pitfalls must be clarified for the calculation of
Di or Dmass. Wang et al. (2004) and Schauble et al. (2006)
checked the effects of anharmonicity of 13C–18O clumping
and found that the harmonic oscillator approximation has
sufficient accuracy for clumped isotope calculations in
many small molecules. However, this approximation might
not hold for other clumped systems, especially those
involving hydrogen atoms because of the large anharmonic-
ity that is commonly associated with it (e.g., Bigeleisen and
Mayer, 1947; Liu et al., 2010). Another common issue is the
choice of frequency scaling factors. Schauble et al. (2006)
chose scaling factors by comparisons with experimental
data. Ma et al. (2008) and Guo et al. (2009) used scaling
factors recommended by other researchers. However, many
choices are available for frequency scaling factors. Each
theoretical method has different uncertainties (Irikura
et al., 2009). A specific theoretical level can have several
slightly different recommendations (e.g., Scott and Radom,
1996; Merrick et al., 2007; Irikura et al., 2009; Alecu et al.,
2010). The frequency scaling factors for a specific theoreti-
cal level are also often different when dealing with different
types of compounds. Therefore, the effect of scaling factors
on the calculation of Di should be carefully checked.

According to the definition of equilibrium Dmass in
Wang et al. (2004), the Dmass value depends on the forma-
tion temperature and on the bulk isotope compositions
(in terms of d, e.g., d18O) of the studied samples. However,
people usually assume the effects of the bulk isotope com-
positions on Dmass are very small, and directly use a unique
calibration to estimate the formation temperature.
Huntington et al. (2009) examined the dependence of D47

on d18O and d13C experimentally but used another D47 def-
inition. Guo et al. (2009) theoretically studied the depen-
dence of kinetic D47 on d18O and d13C and found that the
dependence was very weak. Here, we provide a more rigor-
ous theoretical analysis of the influence of bulk isotope
compositions on the equilibrium Dmass.

2. THEORETICAL METHODS

For equilibrium isotope fractionations, the fractionation
factor (a) is equal to the ratio of the b factors for two com-
pounds (i.e., a = ba/bb). The b factor, defined in Richet
et al. (1977), is an isotopic fractionation between a com-
pound and a reference material which is an ideal atomic
gas (e.g., dissociated and non-interacting atoms of O or C
as described in Schauble (2004)). Following this idea, we
introduce a monatomic reaction treatment for clumped-iso-
tope systems.

If an isotope exchange reaction occurs between VYn and
the ideal gaseous atomic materials V and Y, then

VYn þ V0 þ kY0 $ V0Y0kYn�k þ Vþ kY ð1Þ

where V and V0, Y and Y0 denote different isotopes, n is the
total Y in VYn and k is the number of isotopes exchanged.
The equilibrium constant of this isotope exchange reaction
(K1) can be conventionally obtained from the partition
functions ratios f 0k (Bigeleisen–Mayer equation or Urey
Model; Bigeleisen and Mayer, 1947; Urey, 1947):

K1 ¼ f 0k ¼
s
s0k
�
Yl

i

u0ik
ui
� e�u0ik=2

1� e�u0ik
� 1� e�ui

e�ui=2
ð2Þ

where s is the symmetry number, l is the number of degrees
of freedom for vibration modes (l = 3N � 5 for a linear
molecule and l = 3N � 6 for a non-linear molecule, N is
the number of atoms in the molecule), ui is equal to hcxi/
kBT, h is the Planck constant, c is the speed of light, xi is
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the ith normal vibration mode, kB is the Boltzmann con-
stant and T is the temperature in Kelvin. The superscript
(0) and subscript (k) denote the V0 and Y0 rare isotopes,
respectively.

The equilibrium concentration of V0Y0kYn�k in reaction
(1) is

V0Y0kYn�k

� �
¼ f 0k � ½VYn� �

½V0�
½V�

� �
½Y0�
½Y�

� �k

ð3Þ

According to the definition of b (Richet et al., 1977;
Schauble, 2004),

½V0�
½V� ¼

V0

V

� �
VYn

,
V0bVYn

� �
ð4aÞ

½Y0�
½Y� ¼

Y0

Y

� �
VYn

,
Y0bVYn

� �
ð4bÞ

Substituting Eqs. (4a) and (4b) into Eq. (3), we get

½V0Y0kYn�k �
½VYn�

¼ f 0k
V0bVYn

� Y0bVYn

� 	k �
V0

V

� �
VYn

� Y0

Y

� �k

VYn

ð5Þ

According to the definition of Di (Wang et al., 2004),

Di ¼ 1000 � ðRi-e=Ri-r � 1Þ ð6Þ

where the ratio Ri-e is the abundance of a specific isotopo-
logue i divided by the abundance of the isotopologue con-
taining no rare isotopes, evaluated at thermodynamic
equilibrium. Ri-r is the same ratio but it is for the random
(stochastic) distribution. For the clumped isotopologue
[V0Y0kYn�k ],

Ri-e ¼
½V0Y0kYn�k �
½VYn�

ð7aÞ

Ri-r ¼
s
s0k
� V0

V

� �
VYn

� Y0

Y

� �k

VYn

ð7bÞ

where the symmetry numbers (s) are added to include the
isotopologues with equivalent structural positions into the
final random concentration. Combining Eqs. (5), (6), (7a)
and (7b), we obtain

D V0Y0k Yn�k½ � ¼ 1000
ðs0k=sÞ � f 0k

V0bVYn
� ðY0bVYn

Þk
� 1

 !
ð8Þ

The exact b value of a molecule includes contributions
from all of isotopologues in it. Using VYn as an example,
if there are V, V0, Y and Y0 isotopes in this molecular sys-
tem, then the exact V0b and Y0b are

V0bVYn
¼
Pn

p¼0

Ptp
j¼1f 0jp

½Y0 �
½Y�

� �p

Pn
p¼0

Ptp
j¼1fjp

½Y0 �
½Y�

� �p ð9aÞ

Y0bVYn
¼

Pn
p¼0p �

Ptp
j¼1 f 0jp

½V0 �
½V� þ fjp

� �
½Y0 �
½Y�

� �p�1

Pn
p¼0ðn� pÞ �

Ptp
j¼1 f 0jp

½V0 �
½V� þ fjp

� �
½Y0 �
½Y�

� �p ð9bÞ

where the prime superscript in f 0jp refers to heavy isotope V0,
p refers to heavy isotope Y0, tp represents the t isotopomers
when p are fixed and j represents the jth isotopomer. See
Appendix A for the full derivation.

As defined, the b factor is a value greater than 1. There-
fore, the monatomic [V0]/[V] and [Y0]/[Y] ratios must be
smaller than ðV0=VÞVYn

and ðY0=YÞVYn
, respectively,

according to Eqs. (4a) and (4b). In most geological isotope
systems, the low abundance of rare isotopes (e.g., D, 18O,
17O or 13C) leads to small bulk isotope ratios. For example,
18O/16O � 0.002 and 17O/16O � 0.0004 in natural abun-
dance, resulting in even smaller concentration ratios of
[18O]/[16O] and [17O]/[16O] in a hypothetical equilibrium.
Therefore, Eqs. (9a) and (9b) can be approximated into
simple forms by ignoring all of the terms multiplied either
[V0]/[V] or [Y0]/[Y]:

V0bVYn
� f 00=f0 ¼ f 00 ð10aÞ

Y0bVYn
�
Xt1

j¼1

fj1

,
ðn � f0Þ ¼

Xt1

j¼1

fj1

,
n ð10bÞ

where f0 denotes the f function without isotope exchange,
obviously, f0 = 1. f 00 denotes no isotope exchange for Y
but there is an isotope exchange on the V atom of VYn.
In this situation, t0 = 1 (there are no isotopomers for VYn

or V0Yn). fj1 represents the partition function ratio of the
jth isotopomer, which only contains one rare isotope Y0,
to the one containing no rare isotope. Galimov (1971) sug-
gested equations similar to Eqs. (10a) and (10b) for carbon
isotope studies in biogeochemistry. Similar approximate
treatments were also used by other researchers in studies
of oxygen isotopes in clay minerals and hydrogen isotopes
in organic matter (Méheut et al., 2007; Wang et al., 2009).

If b factors can be approximated by Eqs. (10a) and
(10b), then we can obtain approximate Di values for any
isotopologue. The approximation method in Wang et al.
(2004) becomes inaccurate when the Di values of singly
substituted isotopologues are large, e.g., in N2O or deute-
rium-bearing clumped-isotope systems.

3. APPLICATION EXAMPLES

3.1. Exact and approximate calculations of Di

First, we will show how to calculate Di exactly by using
CO2 as an example. From Eqs. (A1a) and (A1b), we obtain
these relationships (see Appendix A for details):

13C
12C

� �
CO2

¼
P2

p¼0

P2�p
q¼0f 0pqðx1Þpðx2ÞqP2

p¼0

P2�p
q¼0fpqðx1Þpðx2Þq

� x3 ð11aÞ

18O
16O

� �
CO2

¼
P2

p¼0

P2�p
q¼0p � ðf 0pqx3 þ fpqÞðx1Þpðx2ÞqP2

p¼0

P2�p
q¼0ð2� p � qÞ � ðf 0pqx3 þ fpqÞðx1Þpðx2Þq

ð11bÞ
17O
16O

� �
CO2

¼
P2

p¼0

P2�p
q¼0q � ðf 0pqx3 þ fpqÞðx1Þpðx2ÞqP2

p¼0

P2�p
q¼0ð2� p � qÞ � ðf 0pqx3 þ fpqÞðx1Þpðx2Þq

ð11cÞ

where x1, x2 and x3 are the [18O]/[16O], [17O]/[16O] and
[13C]/[12C] ratios, respectively, and represent the concentra-
tion ratios of the ideal monatomic materials O and C in
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equilibrium with CO2. The left sides of Eqs. (11a–c) are the
bulk isotope composition of CO2. In this example calcula-
tion, we use the VSMOW (Vienna standard mean ocean
water) and PDB (Pee Dee Belemnite) standards as these
compositions: 18O/16O = 2005.2 � 10�6, 17O/16O =
379.9 � 10�6 (IUPAC, 2003) and 13C/12C = 11237.2 �
10�6 (Craig, 1957). The bulk isotope compositions do not
have large effects on the value of Di and Dmass (see Section
4.1). Therefore, using any bulk isotope compositions that is
similar to those of natural samples will make little difference
to the results.

Using the Bigeleisen–Mayer equation (B.M. equation
hereafter, Bigeleisen and Mayer, 1947; Urey, 1947) coupled
with quantum chemistry calculations, we can obtain all of
the f and f 0 functions in Eqs. (11a–c) (details are given at
below). With known f and f 0 functions and 18O=16Oð ÞCO2

,
17O=16Oð ÞCO2

and 13O=12Oð ÞCO2
bulk isotopic ratios, solving

Eqs. (11a-c) for the unknown variables x1, x2 and x3 is
straightforward. Once x1, x2 and x3 are obtained, the 13b,
18b and 17b factors can be obtained through Eqs. (9a) and
(9b). Consequently, all of the Di values of the CO2 system
can be calculated precisely from Eq. (8).

To calculate the f and f 0 functions by the B.M. equation,
the harmonic frequencies of every isotopologue are needed.
Many quantum chemistry software packages can provide
these harmonic frequencies. Here, the Gaussian03 program
package (Frisch et al., 2004) is used. The Becke three-
parameter Lee–Yang–Parr (B3LYP) hybrid DFT (Density
Functional Theory) method and the Møller–Plesset pertur-
bation (MP) method are used for the calculations. The
DFT method deals with electron correlation corrections
in a partially empirical way (Lee et al., 1988; Becke,
1993), and the MP theory includes electron correlation cor-
rections through Rayleigh–Schrödinger perturbation
Table 1
Calculated and experimental harmonic frequencies (corrected for anharm

16O12C16O x1 (cm�1)

Experimentala 1353.670
Wang et al.b 1348.479
B3LYP/6-311 + G(3df,2p) 1374.088

MP2/aug-cc-pVTZ 1326.072

15N15N16O

Experimentalc 1280.613
Wang et al.b 1275.062
B3LYP/6-311 + G(3df,2p) 1313.218

12CH4 x1 (cm�1) x2
* (cm�1)

Experimentald 3025.5 1582.7
Ma et al.e 2991.55 1547.83
B3LYP/6-311 + G(3df,2p) 3029.59 1559.64

x2
* is doubly degenerate.

x3
+ and x4

+ are triply degenerate.
a Majcherova et al. (2005).
b Originally from Zúñiga et al. (1999) and Zúñiga et al. (2001) and als
c Vlasova et al. (2006).
d Gray and Robiette (1979).
e Ma et al. (2008).
f Calculated by Eq. (B3) without G0 term (see Appendix B).
g Calculated by ZPE = 1/2

P
ixi.
theory (RS-PT), most commonly to the second order
(MP2) (e.g., Møller and Plesset, 1934). In order to avoid
using scaling factors, we chose the B3LYP and MP2 meth-
ods with large basis sets (i.e., B3LYP/6-311 + G(3df,2p) or
MP2/aug-cc-pVTZ) to obtain accurate harmonic frequen-
cies directly. The frequency results are shown in Table 1.
Even without scaling, our calculated frequencies generally
agree with the experimental harmonic frequencies (Gray
and Robiette, 1979; Majcherova et al., 2005; Vlasova
et al., 2006). Because the B3LYP/6-311 + G(3df,2p) level
seems to overestimate frequency numbers by a few percent
(i.e., 1–3%) for molecules without hydrogen atoms, and
underestimate those of H-containing molecules by a similar
order, we chose not scale the results of B3LYP/6-
311 + G(3df,2p) for all of the cases. We also calculated
the f and f 0 functions using the zero-point energy (ZPE)
model, which includes anharmonic corrections through
the direct use of accurate zero point energies (see Appendix
B for details).

The calculated results of Di are shown in Table 2 (at
300 K), and our results are comparable with those of Wang
et al. (2004). The difference between our ZPE-E results and
their results is very small, and it may be a result of different
numerical calculation processes. The Di results of the B.M.
equation differ slightly from the anharmonic method (i.e.,
the ZPE model). Anharmonic effects will be discussed in de-
tail in Section 4.2.

Our exact method has one less equation to be solved
than the exact method of Wang et al. (2004) because of
the relative concentration being used directly. For instance,
the concentration of 16O12C16O is not needed in our meth-
od because it will be canceled during the calculation. If
needed, the concentration can be obtained through the fol-
lowing equation:
onicity).

x2
* (cm�1) x3 (cm�1) ZPE (cm�1)

672.840 2396.232 2531.403f

670.315 2387.185 2525.394
678.762 2414.272 –
658.807 2401.922 –

581.253 2209.576 2302.703f

576.848 2201.112 2301.072
601.015 2268.811 –

x3
+ (cm�1) x4

+ (cm�1) ZPE (cm�1)

3156.8 1367.4 9725.1f

3135.36 1365.17 9794.40g

3131.79 1341.83 9638.56

o used in Wang et al. (2004).



Table 2
The Di results of CO2 at 300 K using different methods.

Wang et al. results This study – using Wang et al.’s data This study – DFT* This study – MP2+

ZPE-Ea ZPE-Ab B.M.-Ec B.M.-Ad B.M.-Ec B.M.-Ad B.M.-Ec B.M.-Ad

16O13C16O �0.004 �0.004 0.000 �0.004 0.000 �0.004 0.000 �0.004 0.000
16O12C17O �0.006 �0.006 0.000 �0.006 0.000 �0.006 0.000 �0.006 0.000
16O12C18O �0.011 �0.011 0.000 �0.011 0.000 �0.011 0.000 �0.011 0.000
16O13C17O 0.489 0.489 0.499 0.477 0.487 0.488 0.498 0.480 0.490
17O12C17O 0.085 0.087 0.099 0.087 0.099 0.093 0.105 0.081 0.092
16O13C18O 0.938 0.936 0.951 0.917 0.932 0.935 0.951 0.921 0.936
17O12C18O 0.168 0.167 0.184 0.172 0.189 0.183 0.201 0.160 0.177
17O13C17O 1.074 1.075 1.091 1.052 1.067 1.079 1.095 1.051 1.067
18O12C18O 0.333 0.330 0.353 0.340 0.363 0.362 0.384 0.316 0.339
17O13C18O 1.608 1.605 1.627 1.579 1.600 1.618 1.639 1.572 1.593
18O13C18O 2.219 2.216 2.243 2.180 2.207 2.240 2.267 2.166 2.192

* DFT represents the B3LYP/6-311 + G(3df,2p) level.
+ MP2 represents the MP2/aug-cc-pVTZ level.
a ZPE-E is the results calculated by ZPE model exactly.
b ZPE-A is the results calculated by ZPE model approximately.
c B.M.-E is the results calculated by B.M. equation exactly.
d B.M.-A is the results calculated by B.M. equation approximately.
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12C16O16O
� �

�
X2

p¼0

X2�p

q¼0

ðf 0pq � x3 þ fpqÞðx1Þpðx2Þq ¼ 1 ð12Þ

We also calculate Di approximately by Eqs. (10a) and
(10b) (denoted as “ZPE-A” or “B.M.-A” in Table 2). The
results of the approximation methods deviate from the re-
sults of the exact methods by about 1–2%, which is similar
to the effects of anharmonicity and the scaling factor. For
example, D16O13C18O deviates from its exact result (0.936&)
by about 0.015& at 300 K. Such small differences are al-
ready acceptable for many cases, and the approximate re-
sults are always larger than the exact results, suggesting a
possibility to improve the approximate results by using scal-
ing treatments (e.g., scaling down the results by 1%). With
increase in temperature, the differences between the exact
methods and approximate methods rapidly decrease (see
Appendix C).

3.2. Exact and approximate calculations of Dmass

We have only discussed how to calculate Di. However,
the Dmass value (such as D47 for CO2) is the one actually
measured in experiments. With the present technology, it
is difficult to distinguish isotopologues of the same cardinal
mass, such as 18O13C16O, 17O13C17O and 18O12C17O. Here,
we use the D47 of CO2 as an example to show how to calcu-
late Dmass exactly and approximately.

Generally, Dmass and Di are related by
Dmass ¼
X

i

miDi ð13Þ
where mi is the relative abundance fractions of the isotopo-
logues “i” when it is in stochastic distribution (Wang et al.,
2004; Schauble et al., 2006; Guo et al., 2009). According to
the D47 definition by Wang et al. (2004):
D47 ¼ 1000� R47

R47
r

� 1

� �

¼ 1000�
18O13C16O½ �þ 18O12C17O½ �þ 17O13C17O½ �

16O12C16O½ �
18O13C16O½ �rþ½18O12C17O�rþ½17O13C17O�r

½16O12C16O�r

� 1

0
@

1
A ð14Þ
We obtain
D47 ¼ m18O13C16O � D18O13C16O þ m18O12C17O � D18O12C17O

þ m17O13C17O � D17O13C17O ð15Þ
where

m18O13C16O ¼
18O13C16O½ �r

18O13C16O½ �r þ 18O12C17O½ �r þ 17O13C17O½ �r

m18O12C17O ¼
18O12C17O½ �r

18O13C16O½ �r þ 18O12C17O½ �r þ 17O13C17O½ �r

m17O13C17O ¼
17O13C17O½ �r

18O13C16O½ �r þ 18O12C17O½ �r þ 17O13C17O½ �r
and “r” represents the random distribution.
Eq. (13) suggests that accurate Dmass values can be deter-

mined as long as Di is accurate. If the bulk isotope ratios
((18O/16O), (17O/16O) and (13C/12C)) of CO2 are the same
as the VSMOW and PDB standards (see the previous sec-
tion), then we can obtain ms as m18O13C16O = 0.96726,
m18O12C17O = 0.03270 and m17O13C17O = 0.00004. Using our ex-
act Di in Table 2, we obtain D47 = 0.911& at 300 K, com-
pared to 0.914& in Wang et al. (2004). Using
approximate Di values, we obtain D47 = 0.926& at 300 K
and D47 = 0.056& at 1000 K approximately. A scaling
treatment on approximate Di values may be a practical
way to improve the results of Dmass.
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3.3. Approximate calculation of Di when containing

isotopomers

In many situations, the molecules are large and have
many isotopomers. The complexity, in terms of numerous
isotopologues, may prohibit the use of cumbersome calcu-
lation procedures. The approximate method proposed in
this study is a practical way to handle such situations.

We use N2O as an example to show how to approximate
the Di values of molecules containing isotopomers.
Although N2O is just a small molecule, the procedure is
the same for large molecules.

N2O has two isotopomers containing one 15N isotope
(15N14NO and 14N15NO). The approximate b factors of
N2O can be calculated from Eqs. (10a) and (10b):

18b � f 14N14N18O
� 	

ð16aÞ
17b � f 14N14N17O

� 	
ð16bÞ

15b � f 14N15N16Oð Þ þ f 15N14N16Oð Þ
2

: ð16cÞ

The b factor for molecules with isotopomers is the aver-
age value of the f functions of the related isotopologues
(e.g., Eq. (16c)). According to Eq. (8), we can calculate
any Di values of N2O. For example, D14N15N16O is obtained
from:

D14N15N16O ¼ 1000
f ð14N15N16OÞ

15b
� 1

� �
: ð17Þ

By using the frequency data of Wang et al. (2004) and
our methods, the exact and approximate Di values of N2O
at 300 K were calculated (Table 3). The results are in good
agreement with the previous calculations (Table 3). The D47

of N2O (including three isotopologues – 15N15N17O,
14N15N18O and 15N14N18O) is calculated approximately as
0.376& at 300 K, compared to 0.371& of Wang et al.
(2004).
Table 3
The Di results of N2O at 300 K using different methods.

Wang et al. results This study – Wang et al.’s

ZPE-Ea ZPE-Ab

14N15N16O 22.807 22.806 22.807
15N14N16O �22.809 �22.808 �22.807
14N14N17O �0.002 �0.001 0.000
15N15N16O 0.073 0.067 0.069
14N15N17O 23.116 23.112 23.114
15N14N17O �22.729 �22.731 �22.729
14N14N18O �0.003 �0.003 0.000
15N15N17O 0.454 0.446 0.449
14N15N18O 23.398 23.399 23.403
15N14N18O �22.657 �22.655 �22.651
15N15N18O 0.801 0.797 0.802

* DFT represents the B3LYP/6-311 + G(3df,2p).
a ZPE-E is the results calculated by ZPE model exactly.
b ZPE-A is the results calculated by ZPE model approximately.
c B.M.-E is the results calculated by B.M. equation exactly.
d B.M.-A is the results calculated by B.M. equation approximately.
4. DISCUSSION

4.1. The relationship between equilibrium Dmass and bulk

isotope composition

Dmass is dependent on the equilibration temperature and
the bulk isotope composition (e.g., Eq. (15)). The potential
influence of the bulk isotope composition on Dmass should
be investigated to see if composition-dependent corrections
to inferred temperatures could improve their accuracy.
Huntington et al. (2009) checked the dependence of D47

on d18O and d13C experimentally, but they used another
D47 definition. The dependence of equilibrium Dmass on
the bulk isotope composition is theoretically analyzed here.

Using CO2 as an example and the frequency data from
Wang et al. (2004), the D47 values are calculated using
d18O and d13C isotopic compositions varying from �40&

to 40& (Fig. 1), which is a range spanning most geologic
samples. The d17O values are obtained by d17O =
0.516 � d18O assuming a typical mass-dependent isotope
fractionation relationship (e.g., Boering et al., 2004).
Fig. 1 shows that D47 varies slightly with d18O and d13C.
D47 has a negative correlation with d18O and a positive cor-
relation with d13C. However, such variations are very small,
e.g., less than 0.002& at 300 K (equivalent to less than
0.5 �C in temperature reconstruction).

Because the concentration and Di value of isotopologue
18O12C17O in CO2 is far less than 18O13C16O and the con-
centration of 17O13C17O is negligible, Eq. (15) can be fur-
ther approximated to

D47 � m18O13C16O � D18O13C16O

� D18O13C16O 1þ
17Rref � ð1þ d18OÞ0:516

13Rref � ð1þ d13CÞ

 !,
ð18Þ

where 17Rref = 379.9 � 10�6 and 13Rref = 11237.2 � 10�6.
In Eq. (18), D18O13C16O is almost independent of the isoto-

pic composition (see Section 2). Because the ratio
data This study – DFT*

B.M.-Ec B.M.-Ad B.M.-Ec B.M.-Ad

23.421 23.422 23.731 23.732
�23.423 �23.422 �23.733 �23.732
�0.001 0.000 �0.002 0.000

0.034 0.036 0.060 0.062
23.720 23.722 24.040 24.042
�23.341 �23.339 �23.640 �23.637
�0.003 0.000 �0.003 0.000

0.408 0.411 0.454 0.457
23.995 23.999 24.320 24.324
�23.265 �23.262 �23.553 �23.549

0.752 0.756 0.815 0.820



Fig. 1. The value of D47 varies with d13C and d18O at 300 K. D47

increases with increasing d13C but decreases as d18O increases.
Although D47 varies with d, the magnitude of variation is very
small, consistent with a uniform D47–T relationship in natural
samples.

Fig. 2. The anharmonic correction to D018O13C16O varies with
temperature, raising D018O13C16O by about 0.0125& at room temper-
ature. Our results in Table 2 closely match previous calculations
(Wang et al., 2004) very well.
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(17Rref/
13Rref) is only 0.034, any changes caused by varia-

tions of d18O and d13C will be minimal. Therefore, a
roughly independent D47–T relationship could be expected
in nature. However, for artificial samples with extreme iso-
topic compositions and some new clumped isotope systems
(e.g., those with hydrogen atoms), the corrected Dmass–T

relationships should be incorporated in thermometric
calculations.

Note that another D47 definition (i.e., D47 = 1000 �
(R47/Rr

47 � R46/Rr
46 � R45/Rr

45 + 1)) has been used (e.g.,
Eiler, 2007; Huntington et al., 2009). The difference between
the D47 values using these two definitions is small. At
roughly natural C- and O-isotope abundances, we find
the relationship between them is

D47ðEiler; 2007Þ � 1:016� D47ðWang et al:; 2004Þ ð19Þ

4.2. The effect of anharmonic corrections

Much like the definition of Di in Eq. (6), we define D0i as
D0i = 1000 � ln(Ri-e/Ri-r). Generally, Di and D0i are approxi-
mately equal to each other because the ratio of Ri-e/Ri-r is
close to 1 and the approximation ln(1 + x) � x is true when
x is small. Here, we will only discuss the anharmonic cor-
rection to D0i instead of Di. D0i can be calculated using

D0
V0Y0k Yn�k½ � ¼ 1000 ln

ðs0k=sÞ � f 0k
V0bVYn

� Y0bVYn

� 	k

 !
ð20Þ

Taking D018O13C16O of CO2 as an example,

D018O13C16O ¼ 1000 ln
1

2

f 01
13b � 18b

� �
� 1000 ln

f836

f636 � f826

� �
ð21Þ

where f836, f636 and f826 are the partition function ratios of
18O13C16O to 16O12C16O, 16O13C16O to 16O12C16O and
18O12C16O to 16O12C16O, respectively. Each f can be ex-
pressed as a product of two parts: the harmonic part and
the anharmonic correction part (i.e., f = fHarm � fCorr, see
Eq. (B6) in Appendix B for the detail of fCorr). In this
way, D0i can also be separated into harmonic and anhar-
monic parts: D0i ¼ D0i-h þ D0i-anhc. The anharmonic correction
part of D0i is (see Appendix B)

D018O13C16O�anhc ¼ 1000
1

4

hc
kbT

Xl

i6j

v636
ij þ v826

ij � v836
ij � vij

� � !

ð22Þ

where v636
ij , v826

ij , v836
ij and vi,j are the anharmonic constants

of 16O13C16O, 18O12C16O, 18O13C16O and 16O12C16O. Find-
ing experimental data for minor isotopologues is difficult,
therefore, we use the Darling–Dennison approximation rule
(e.g., Richet et al., 1977) to obtain anharmonic constants of
minor isotope species approximately:

v0ij ¼ vij

x0ix
0
j

xixj
ð23Þ

where the prime superscript denotes the molecule contain-
ing heavy isotopes. This approximation is only suitable
for simple molecules (e.g., Darling and Dennison, 1940).

The harmonic frequencies in Eq. (23) are obtained by a
calculation at the B3LYP/6-311 + G(3df,2p) level. For the
anharmonic constants of the major isotopologue, we use
the values provided in Majcherova et al. (2005). Then, we
can obtain the pure anharmonic contribution part to D0i.
Fig. 2 shows the anharmonic correction to D018O13C16O and
its temperature dependence. This correction is in good
agreement with the results in Table 2.

Ma et al. (2008) studied the doubly-substituted methane
isotopologue 13CDH3 at a harmonic theoretical level. Here,
we check the anharmonic contribution to D13CDH3

of meth-
ane (CH4). Without anharmonic corrections, our harmonic
results agree well with those of Ma et al. (2008). However,



Fig. 3. The anharmonic correction to D13CDH3
varies with temper-

ature. Our harmonic results agree well with Ma et al. (2008). The
anharmonic correction reduces D13CDH3

by about 0.2& from 0 to
450 �C.
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our results with the anharmonic correction reduce D13CDH3

by approximately 0.2& (i.e., reduce by about 5%) from 0
to 450 �C (Fig. 3).

The calculated b factors in this study (13b = 1.1263 and
Db = 12.7984) are in good agreement with the b factors
(13b = 1.1262 and Db = 12.8201) provided by Richet et al.
(1977), also with anharmonic corrections. The difference be-
tween our Db values and their results will bring about
0.01& error in D13CDH3

calculation (estimated by the pro-
portional projection method, see Schauble et al. (2006)
for details).

From Eqs. (10a) and (10b), we know that the b factor is
a function of f. For general cases, b factors will become
smaller after applied anharmonic corrections (see Appendix
B and Liu et al., 2010). However, anharmonic corrections
can either reduce or increase Di. For example, they can re-
duce D13CDH3

by 5% (i.e., 0.309&) but increase D18O13C16O by
2% (i.e., 0.019&) at 300 K.

Generally, anharmonic corrections can change b factors
and Di by similar orders. For example, they reduce 13b, Db
or D13CDH3

of CH4 by about 5% (i.e., 5&, 149& and
0.309&), respectively. For CO2 and N2O, the correspond-
ing corrections on b factors and Di values are about 2%
at 300 K.

These theoretical analyses of the anharmonic effects on
Di indicate that the corrections are on the order of percents
of Di and b. We recommend including anharmonic correc-
tions for the Di calculation. Clumps involving hydrogen
atoms will show even larger effects.

4.3. The effects of frequency scaling factor

Pure harmonic frequencies are needed for the partition
function ratio (or RPFR) calculation if using the B.M.
equation. Ab initio quantum chemistry calculations are an
effective approach to provide such harmonic frequencies
(Hehre et al., 1986). However, when the theoretical level
used is insufficient, frequency scaling factors may be needed
to correct the frequency results. Previous studies (e.g., Liu
and Tossell, 2005; Schauble et al., 2006; Méheut et al.,
2007, 2009; Li et al., 2009; Schauble, 2011) suggested that
the choice of frequency scaling factors only bring small ef-
fects on the calculation of isotope fractionation factor (a)
when a is not very large. For multiply substituted isotopo-
logues, we need to know whether the Di calculation is sen-
sitive to frequency scaling factors or not.

As a first-order approximation, we find the following
relationship (see Appendix D for details):

D0i�s � S � D0i ð24Þ

where D0i�s is the D0i value after the scaling treatment and S

is the frequency scaling factor. Eq. (24) implies that the
uncertainties in the scaling factors will be transferred to
Di proportionately. Usually, the uncertainty in the fre-
quency scaling factors is on the order of percent, meaning
the same order of error in Di. One common way to reduce
such errors is to use high-level theoretical methods, whose
scaling factors have relatively small uncertainties (e.g.,
Andersson and Uvdal, 2005; Irikura et al., 2009; Liu
et al., 2010). If less precise theoretical levels have to be used,
as is usually the case for large systems, then the frequency
scaling factors should be chosen carefully.

4.4. Exploring the behavior of singly substituted

isotopologues

Many general rules for the behavior of clumped isotopes
have been observed (Wang et al., 2004; Schauble et al.,
2006; Ma et al., 2008; Guo et al., 2009; Eagle et al.,
2010). For example, Wang et al. (2004) found that most sin-
gly substituted isotopologues have Di values close to zero;
excepting 15N14N16O and 14N15N16O (see Tables 2 and 3).
Schauble et al. (2006) found that carbonate minerals pos-
sess very similar Di values for different chemical composi-
tions and structures, and that even carbonate ion in
apatite has the same 13C–18O clumping (Eagle et al.,
2010). Here, the behavior of singly substituted isotopo-
logues is theoretically analyzed.

For singly substituted isotopologue without isotopomers
(e.g., 18O12C16O, 14N14N18O, etc.), the b factors are approx-
imately equal to f1/n, where f1 is the partition function ratio
of a molecule containing one rare isotope relative to one
without a rare isotope (e.g., 18O12C16O to 16O12C16O) and
n is the number of atoms relating to the corresponding b
(e.g., n = 2 for ObCO2

; n = 1 for CbCO2
). n in this case is al-

ways equal to s/s1 (symmetry number of non-substituted
to one rare isotope substituted). Hence, from Eq. (8):

D1 ¼ 1000� s1

s
f1

.
b� 1

� �
� 1000� s1

s
f1

. f1

n
� 1

� �
¼ 0

ð25Þ

where ‘1’ refers to a singly substituted isotopologue. This
result shows that the Di values of singly substituted isotopo-
logues without isotopomers will be close to zero. It implies
that this kind of isotopologue is always close to stochastic
abundance.

For singly substituted isotopologues with isotopomers
(e.g., 15N14N16O and 14N15N16O, 13CH3CH2CH3 and
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CH3
13CH2CH3, etc.), large Di values appear as a result of

the large free energy difference among the isotopomers
(Galimov, 1971; Wang et al., 2004). However, all these iso-
topomers have the same mass, and their relative stochastic
abundance fractions are inversely proportional to their re-
lated symmetry number from Eq. (7b) (i.e., s/sj1). From
Eq. (13), their final contribution to the corresponding Dmass

could be obtained as

Dsc
mass ¼

Xt1

j¼1

s=sj1Pt1
j¼1

s=sj1

Dj1 ¼
1

n

Xt1

j¼1

s
sj1

sj1

s
� fj1

b
� 1

� �

� 1

n

Xt1

j¼1

fj1

 ! , Xt1

j¼1

fj1

 ,
n

!
�
Xt1

j¼1

s
sj1

!
¼ 0 ð26Þ

where n is always equal to
P

(s/sj1). Therefore, there is little
“net” contribution to Dmass from singly substituted isotopo-
logues, no matter whether they occur with or without iso-
topomers. Wang et al. (2004) reached the same conclusion
in their numerical calculations of Di for many singly substi-
tuted isotopologues.

One application of Eq.(26) is that it justifies the assump-
tion used to determine d values (e.g., d18O and d13C) in
experiments. For example, because 16O13C16O and
18O12C16O of CO2 dominate the isotopologues with mass-
45 and mass-46 (Eiler, 2007), it is reasonable to assume that
R45 and R46 are in stochastic distribution too (Eiler and
Schauble, 2004). This assumption underlies the standard
procedure of extracting d13C and d18O values from mass-
spectrometric data (e.g., Craig, 1957).

5. CONCLUSIONS

In this paper, a new method based on statistical mechan-
ics is proposed to calculate Di for clumped isotope systems.
The calculations for CO2, N2O and CH4 agree with the pre-
vious results. Unlike the method suggested by Wang et al.
(2004), the approximate method proposed here can handle
molecules with isotopomers (e.g., 14N15N16O vs.
15N14N16O) and can estimate Dmass for any kind of mole-
cule, no matter whether the Di values of singly-substituted
isotopologues are small or large. Because the proposed
approximate method appears to consistently overestimate
Dmass by 1 to 2 percent, a scale factor could further improve
the results. We find that equilibrium Dmass is roughly inde-
pendent of the bulk isotope composition at room tempera-
ture and above. The anharmonic corrections to Di are
similar to those affecting b factors and are on the order of
one to a few percent. The frequency scaling factor can sig-
nificantly influence Di and we recommend using the most
accurate theoretical method available to avoid errors. The
net contribution of singly substituted isotopologues to
Dmass is close to zero, which justifies an assumption used
in determining the bulk isotopic compositions in mass spec-
trometric measurements.
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APPENDIX A. THE EXACT b CALCULATIONS

From its definition, the exact b should include all of the
isotopologues in the molecule of interest, VYn. Similar to
Eq. (3), the equilibrium concentration of any isotopologue
can be directly obtained by using its f function and the equi-
librium concentrations of [VYn], [V0]/[V] and [Y0]/[Y]. The
bulk isotope ratio ðV0=VÞVYn

or ðY0=YÞVYn
can be obtained

by summing over all of the isotopologues related to their
own isotope substitutions::

V0

V

� �
VYn

¼
P

p½V0Y0pYn�p�P
p½VY0pYn�p�

¼
Pn

p¼0f 0p
½Y0 �
½Y�

� �p

Pn
p¼0fp

½Y0 �
½Y�

� �p �
½V0�
½V� ðA1aÞ

Y0

Y

� �
VYn

¼
P

p p � ½V0Y0pYn�p� þ ½VY0pYn�p�
� �

P
pðn� pÞ � ½V0Y0pYn�p� þ ½VY0pYn�p�

� �

¼
Pn

p¼0 p � f 0p
½V0 �
½V� þ fp

� �
½Y0 �
½Y�

� �p

Pn
p¼0ðn� pÞ � f 0p

½V0 �
½V� þ fp

� �
½Y0 �
½Y�

� �p ðA1bÞ

If [V0Y0pYn�p] has t isotopomers, which differ in non-equiv-
alent structural positions of isotopic substitution, such as
N2O containing one 15N that has two isotopomers (i.e.,
15N14NO and 14N15NO), then

V0

V

� �
VYn

¼
Pn

p¼0

Ptp
j¼1f 0jp

½Y0 �
½Y�

� �p

Pn
p¼0

Ptp
j¼1fjp

½Y0 �
½Y�

� �p �
½V0�
½V� ðA2aÞ

Y 0

Y

� �
VYn

¼
Pn

p¼0 p �
Ptp

j¼1 f 0jp
½V0 �
½V� þ fjp

� �
½Y 0 �
½Y �

� �p

Pn
p¼0ðn� pÞ �

Ptp
j¼1 f 0jp

½V0 �
½V� þ fjp

� �
½Y0 �
½Y�

� �p ðA2bÞ

where tp represents t isotopomers and j represents jth iso-
topomer, when p is fixed.

From its definition, b factors can be exactly calculated
by the following equation:

V0bVYn
¼ V0

V

� �
VYn

,
½V0�
½V� ¼

Pn
p¼0

Ptp
j¼1f 0jp

½Y0 �
½Y�

� �p

Pn
p¼0

Ptp
j¼1fjp

½Y0 �
½Y�

� �p ðA3aÞ

Y0bVYn
¼ Y0

Y

� �
VYn

,
½Y0�
½Y�

¼
Pn

p¼0 p �
Ptp

j¼1 f 0jp
½V0 �
½V� þ fjp

� �
½Y0 �
½Y�

� �p�1

Pn
p¼0ðn� pÞ �

Ptp
j¼1 f 0jp

½V0 �
½V� þ fjp

� �
½Y0 �
½Y�

� �p ðA3bÞ
APPENDIX B. ANHARMONIC EFFECTS

The B.M. equation or Urey model (i.e., Eq. (2)) is based on
the harmonic vibration and rigid rotator approximations,
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which become imprecise for H/D isotope exchange reactions.
A brief introduction about the method with corrections be-
yond the harmonic level is given here. Readers are referred
to Bron and Wolfsberg (1972), Richet et al. (1977) and Liu
et al. (2010) for more details.

Anharmonic effects arise from the fact that potential en-
ergy is not a simple quadratic function of the internal
molecular coordinates. For a polyatomic molecule, an
expression for the second-order correction to the vibra-
tional energy is given by (e.g., Wolfsberg et al., 1970;
Barone, 2004)

En ¼ hc G0 þ
X

i

ni þ
1

2

� �
xi þ

X
i6j

vij ni þ
1

2

� �
nj þ

1

2

� � !

ðB1Þ

where G0 is a constant, n, ni and nj are the quantum num-
bers, xi is harmonic frequencies and vij is anharmonic con-
stants. The partition function for the vibration is given by

Q ¼ exp �
P

nEn

kbT

� �
ðB2Þ

The zero-point energy (ZPE) of the vibration is an
important contribution to the partition function, especially
at low temperature. The ZPE is given by

ZPE ¼ hc G0 þ
1

2

X
i

xi þ
1

4

X
i6j

vij

 !
ðB3Þ

From this, f 0k can be calculated as

f 0k ¼
s
s0k
� expð�ZPE0k=kbT Þ

expð�ZPE=kbT Þ �
Yl

i

u0ik
ui
� 1� e�ui

1� e�u0ik
ðB4Þ
0.01

0.015

0.02

d(
‰
)

d18

d17

d13
where ZPE0k and ZPE denote the zero point energies of
V0Y0kYn�k and VYn, respectively. Here, we call Eq. (B4)
the “ZPE model”, which includes anharmonic corrections
to ZPE. This model is a more accurate treatment than the
B.M. equation or the Urey model (e.g., Wang et al., 2004;
Liu et al., 2010). Note that there are higher order correc-
tions to the harmonic approximation possible. Here, we
only adopt the largest one that is related to the ZPE (e.g.,
Liu et al., 2010).

The anharmonic correction to the f function can be rep-
resented as

f 0kCorr ¼ exp
hc

kbT
G0 � G0k0
� 	

þ 1

4

hc
kbT

Xl

i6j

vij � v0kij

� � !

ðB5Þ
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Fig. C1. The error of our approximate method varies with
temperature when [18O/16O] and [13C/12C] are fixed to
2005.2 � 10�6 and 11237 � 10�6, respectively.
For non-H/D isotope exchange reactions, the G0 term can
be safely neglected (see Table 7 in Liu et al., 2010), the Eq.
(B5) can then be simplified to

f 0kCorr ¼ exp
1

4

hc
kbT

Xl

i6j

vij � v0kij

� � !
ðB6Þ

which is the formula used by Richet et al. (1977) and Zeebe
(2009).
APPENDIX C. ESTIMATING THE ERROR OF THE

APPROXIMATE METHOD

In comparing Eqs. (9a) and (9b) with Eqs. (10a) and
(10b), the error mainly arises from neglecting those isotope
ratios that usually are close to zero. Essentially, the larger
those ignored isotope ratios are, the bigger the error will
be. A notation dn is defined to represent the deviation from
the exact b factor results:

dn ¼ 1000� ðbe=ba � 1Þ ðC1Þ

where n represents the different rare isotopes by using their
mass numbers, such as n = 13 for the 13C case. be is an exact
b value obtained from Eqs. (9a) and (9b). ba is an approx-
imate result from Eqs. (10a) and (10b) which is completely
independent of the isotope ratios. dn is in units of per mil.

For the CO2 system, the unknown variables for the be

calculation are the isotope ratios [18O/16O] and [13C/12C]
of an ideal atomic material O or C, which is in isotopic
equilibrium with CO2. We can set [18O/16O] and [13C/12C]
to 2005.2 � 10�6 and 11,237 � 10�6, respectively, for gen-
eral situations. The variable [17O]/[16O] can be obtained
from a mass-dependent fractionation relationship. The re-
sults are shown in Fig. C1 for different temperatures. The
largest errors are from the b factor of 18O (but only less
than 0.02&). In general, these results suggest that the b fac-
tors obtained by the approximate method are very close to
those from the exact method, suggesting our approximate
method is adequate for the CO2 case.

APPENDIX D. SCALING FACTOR EFFECTS

The reduced partition function ratio (RPFR) may be
used to calculate isotope fractionation, which is defined as
(Bigeleisen and Mayer, 1947; Urey, 1947)

RPFR0k ¼
s0k
s

f 0k ¼
Yl

i

u0ik
ui
� e�u0ik=2

1� e�u0ik
� 1� e�ui

e�ui=2
ðD1Þ
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According to previous researchers (e.g., Criss, 1991;
Méheut et al., 2009), at low temperature, the relationship
between the scaled RPFR (i.e., RPFR0k-s) and the un-scaled
one (i.e., RPFR0k) is

ln RPFR0k-s � S � ln RPFR0k ðD2Þ

Generally speaking, b factors equal to:

b ¼ 1

n

Xn

j¼1

RPFRj ðD3Þ

where RPFRj represents the reduced partition function ra-
tio of the molecule containing one rare isotope. For high-
symmetry molecules, all of these RPFRs are equal, there-
fore b = RPFR and lnbs = lnRPFRs � S � lnRPFR =
S � lnb. For asymmetric molecules, the isotopologue con-
taining one rare isotope might have isotopomers. In these
cases, as a first-order approximation,

ln b ¼ ln
1

n

Xn

j¼1

RPFRj

 !
�
Xn

j¼1

xj

,
n�
Xn

j¼1

ln RPFRj

,
n

ðD4Þ

where xj = RPFRj � 1 � lnRPFRj. Substituting Eq. (D2)
into Eq. (D4) gives

ln bs �
1

n

Xn

j¼1

ln RPFRS
j � S � ln b ðD5Þ

Substituting Eqs. (D2) and (D5) into Eq. (20), we obtain

D0i-s � S � D0i ðD6Þ
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